LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

M.Sc. DEGREE EXAMINATION - PHYSICS

FOURTH SEMESTER - APRIL 2014

PH 4811 - NUCLEAR PHYSICS

Date: 29/03/2014	Dept. No.	Max.: 100 Marks
Time $\cdot 0.1.00-04.00$	<u>-</u> [

PART A

Answer **ALL** the questions

 $(10 \times 2 = 20)$

- 1. What is Yukawa's field particle?
- 2. Give the relation between the 3 kinds of exchange operators.
- 3. Explain the stability of nuclei in terms of binding energy.
- 4. Mention any two significant details derived from atomic masses.
- 5. What are nuclear chain reactions?
- 6. Distinguish between nuclear fission and fusion reaction with one example for each.
- 7. What are neutron stars?
- 8. List the two types of β decay process.
- 9. What the types of interactions occurring in elementary particles?
- 10. What are hadrons? Give any two examples.

PART - B

Answer any **FOUR** questions

 $(4 \times 7.5 = 30)$

- 11. Write brief notes on:
 - (i) No excited S-states in the deuteron

(4)

(ii) Range and depth of the nuclear potential

(3.5)

- 12. Derive Levy's mass formula and give a detailed description of atomic masses and their significance.
- 13. Explain the continuum theory of nuclear reactions.
- 14. With a neat diagram discuss the β-decay spectrum and account for neutrino hypothesis.
- 15. Describe the classification of elementary particles with a neat sketch.

PART – C

Answer any **FOUR** questions

 $(4 \times 12.5 = 50)$

- 16. Discuss the iso-spin formalism based on exchange forces.
- 17. Outline the salient features of the shell model and the significance of magic numbers.

18.	Explain in detail the various components of a nuclear reactor.
19.	Discuss Fermi's theory of β -decay and hence distinguish between Fermi and Gamow-Teller selection
	rules for various transitions.
20.	State and explain the CPT theorem for elementary particles.
